PROJECT ENGINEER:
Fleming, Andre, and Assoc. Inc.

As-Built Drawn By: -
Designed By: Matthew J. Gundry, P.E.

3615 N. Hastings Way
Eau Claire, WI 54703
USA
1+715-832-8400

Mount Washington HS55
Flying Eagles Ski Club
Eau Claire, Wisconsin
USA

HS55 (K50)

DESIGN NOTES:
- Inrun track is refrigerated ice. Point A is calculated using $\rho = 1^\circ$.
- Additional inrun length to Point A is provided for slower summer track conditions with $\rho = 3^\circ$.
- Point B is established using an athlete performance increase of 1.06.
- Specifications are "Standards for the Construction of Jumping Hills - 2012" by FIS and authored by Hans-Heini Gasser, revised August 2015.

PARAMETERS

$e = 60.73$ m (A^2)

$S = 14.29$ m

$t = 5.478$ m

$\gamma = 32.5^\circ$

$\alpha = 10.2^\circ$

$R_1 = 67$ m (CLOTH)

$h_K = 22.142$ m

$n_K = 44.552$ m

$h_P = 21.241$ m

$l_1 = 1.565$ m

$l_2 = 5.026$ m

$a = 64.2$ m

$\beta_P = 35.5^\circ$

$\beta_K = 34.5^\circ$

$\beta_L = 31.3^\circ$

$r_L = 90$ m

$r_2 = 84$ m

$n_P = 43.265$ m

$P = 48.43$ m

$K = 50$ m

$L = 55.03$ m

$b_1 = 2.1$ m

$b_K = 10.5$ m

$b_A = 11.5$ m

$Z = 36.21$ m

$V_0 = 20.26$ m/s

$s = 1.250$ m

DESIGN NOTES:
- Inrun track is refrigerated ice. Point A is calculated using $\rho = 1^\circ$.
- Additional inrun length to Point A is provided for slower summer track conditions with $\rho = 3^\circ$.
- Point B is established using an athlete performance increase of 1.06.
- Specifications are "Standards for the Construction of Jumping Hills - 2012" by FIS and authored by Hans-Heini Gasser, revised August 2015.

PARAMETERS

$e = 60.73$ m (A^2)

$S = 14.29$ m

$t = 5.478$ m

$\gamma = 32.5^\circ$

$\alpha = 10.2^\circ$

$R_1 = 67$ m (CLOTH)

$h_K = 22.142$ m

$n_K = 44.552$ m

$h_P = 21.241$ m

$l_1 = 1.565$ m

$l_2 = 5.026$ m

$a = 64.2$ m

$\beta_P = 35.5^\circ$

$\beta_K = 34.5^\circ$

$\beta_L = 31.3^\circ$

$r_L = 90$ m

$r_2 = 84$ m

$n_P = 43.265$ m

$P = 48.43$ m

$K = 50$ m

$L = 55.03$ m

$b_1 = 2.1$ m

$b_K = 10.5$ m

$b_A = 11.5$ m

$Z = 36.21$ m

$V_0 = 20.26$ m/s

$s = 1.250$ m